மடக்கை(Logarithm)
-
If ax=N then logaN=x
Examples:
101=10 => log1010=1
31=3 => log33=1
21=2 => log22=1
In General
a1=a => logaa=1
If ax=N then logaN=x
Examples:
100=1 => log101=0
30=1 => log31=0
20=1 => log21=0
In General
a0=1 => loga1=0If logaN=x then ax=N
Examples:
Log1010=1 => 101=10
Log33=1 => 31=3
Log22=1 => 21=2
In General
Logaa=1 => a1=a
If logaN=x then ax=N
Examples:
Log101=0 => 100=1
Log31=0 => 30=1
Log21=0 => 20=1
In General
Loga1=0 => a0=1
மடக்கை விதிகள்(Laws 0f Logarithm)
loga(mn) = logam + logan
Examples:
log10(10x100) = log1010 + log10100
log5(125x25) = log5125 + log525
loga(m/n) = logam - logan
Examples:
Log10(100/10) = log10100 - log1010
Log5(125/25) = log5125 - log525
logamr = r logam
Examples:
Log10104 = 4 log1010
Log51255= 5 log5125
பயிற்சிகள்(Exercises)
-
log101000
=log10103
= 3 log1010
= 3 x 1 (log1010=1)
=3
log1025 + log108 - log102
=log10(25 x 8 / 2)
=log10(100)
=log10102
=2 log1010
=2 x 1
=2
2 log108 + 2 log105 = log1043 + log10x
log10x = 2 log108 + 2 log105 - log1043
= log1082 + log1052 - log1043
=log10(82 x 52/43)
log10x = log10(25)
x=25
log24 + log28
=log2(4 x 8)
=log2(32)
=log225
=5 x 1
=5
log520 + log54 – log516
=log5(20 x 4 / 16)
=log5(5)
=1
log10200 + log10300 – log560
=log10(200 x 300 / 60)
=log10(1000)
=log10(103)
=3 log1010
=3
log10x - log102 = log103 – log104 + 1
log10x =log102 + log103 – log104 + log1010
=log10(2 x 3 x 10 /4)
log10x =log10(15)
x = 15
No comments:
Post a Comment