Sunday, December 8, 2024

மடக்கை விதிகளும் பயிற்சிகளும்

மடக்கை(Logarithm)

  • If ax=N then logaN=x

    Examples:
    101=10 => log1010=1
    31=3 => log33=1
    21=2 => log22=1

    In General
    a1=a => logaa=1

  • If ax=N then logaN=x

    Examples:
    100=1 => log101=0
    30=1 => log31=0
    20=1 => log21=0

    In General
    a0=1 => loga1=0

  • If logaN=x then ax=N

    Examples:
    Log1010=1 => 101=10
    Log33=1 => 31=3
    Log22=1 => 21=2

    In General
    Logaa=1 => a1=a

    If logaN=x then ax=N

    Examples:
    Log101=0 => 100=1
    Log31=0 => 30=1
    Log21=0 => 20=1

    In General
    Loga1=0 => a0=1


மடக்கை விதிகள்(Laws 0f Logarithm)

  • loga(mn) = logam + logan

    Examples:
    log10(10x100) = log1010 + log10100

    log5(125x25) = log5125 + log525


  • loga(m/n) = logam - logan

    Examples:
    Log10(100/10) = log10100 - log1010

    Log5(125/25) = log5125 - log525

  • logamr = r logam

    Examples:
    Log10104 = 4 log1010

    Log51255= 5 log5125

பயிற்சிகள்(Exercises)

  • log101000
    =log10103
    = 3 log1010
    = 3 x 1 (log1010=1)
    =3

  • log1025 + log108 - log102
    =log10(25 x 8 / 2)
    =log10(100)
    =log10102
    =2 log1010
    =2 x 1
    =2

  • 2 log108 + 2 log105 = log1043 + log10x
    log10x = 2 log108 + 2 log105 - log1043
    = log1082 + log1052 - log1043
    =log10(82 x 52/43)
    log10x = log10(25)
    x=25

  • log24 + log28
    =log2(4 x 8)
    =log2(32)
    =log225
    =5 x 1
    =5

  • log520 + log54 – log516
    =log5(20 x 4 / 16)
    =log5(5)
    =1

  • log10200 + log10300 – log560
    =log10(200 x 300 / 60)
    =log10(1000)
    =log10(103)
    =3 log1010
    =3

  • log10x - log102 = log103 – log104 + 1
    log10x =log102 + log103 – log104 + log1010
    =log10(2 x 3 x 10 /4)
    log10x =log10(15)
    x = 15

No comments:

Post a Comment